1 Introduction

The purpose of this work is to give a detailed proof for an exercise which appears in "A Course in the Theory of Groups, second edition" by Derek Robinson, [ROB] from now on. The exercise appears on page 50 of the book and goes as follows:
1.

If F is a free group on a subset X and $\emptyset \neq Y \subset X$, prove that F / Y^{F} is free on $X \backslash Y$.

I'm assuming here that the reader is already familiar with some basic definitions and facts about free groups (and groups in general) although I give further down some of the precise definitions I will be using. "subset X " is probably a typo and what was meant was "set X ". In the above the only notation which is not totally standard if Y^{F} which [ROB] calls the normal closure of Y in F and defines as follows:
2. Definition: For a group F and any $Y \subseteq F$, the normal closure of Y in F (in notation, Y^{F}) is the least normal subgroup of F which contains Y.

So the exercise wants us to prove that the free group generated by $X \backslash Y$, lets call it for now F^{\prime}, is isomorphic to the quotient group F / Y^{F}. No hint is given.

It seems obvious that the intended isomorphism is the one which sends a word $x \in F^{\prime}$ to $x \cdot Y^{F}$. Proving that this is onto is easy enough. But how to prove that it is $1-1$? The only way I can think of is to prove a certain intermediate result. Before I get to that, I need to fix the definition of a free group. For this, I find the technicalities more convenient if I follow the construction of a free group given in "Algebra" by Pierre Grillet ([GRI] from now on) rather than the one in $[\mathrm{ROB}]$. So now I will summarise the construction. For all the details, the reader should consult any of the 2 books.
3. Start with a non empty set X. Fix a set X^{\prime} with the same cardinality as X so that $X \cap X^{\prime}=\emptyset$ and fix a bijection from X to X^{\prime}. For every $x \in X$, the image of x through the bijection will be denoted as x^{-1} and for every $x^{\prime} \in X^{\prime}$, the inverse image of x^{\prime} through the bijection will be denoted as $x^{\prime-1}$. So in particular we have that for every $x \in X \cup X^{\prime},\left(x^{-1}\right)^{-1}=x$. Let $\bar{X}=X \cup X^{\prime}$. We consider formal products of elements of \bar{X} i.e. finite sequences of elements of \bar{X}. Such finite sequences, including the empty one, will be called words (over \bar{X}). We will denote the set of all such words by
\mathbb{W} or $\mathbb{W}(T)$ if we want to refer to some set other than X. Formally, every $w \in \mathbb{W}$ is a function from some $n \in \mathbb{N}$ to \bar{X}. The domain of w (i.e. this n) will be denoted by len (w).
4. We define a product on \mathbb{W} : for all $w_{1}, w_{2}, w_{1} \odot w_{2}$ will be the concatenation of w_{1} and w_{2}. Obviously, $\operatorname{len}\left(w_{1} \odot w_{2}\right)=\operatorname{len}\left(w_{1}\right)+\operatorname{len}\left(w_{2}\right)$.

A $w \in \mathbb{W}$ will be called reduced if there is no $i \in \operatorname{len}(w)$ such that $i+1 \in$ $\operatorname{len}(w)$ and $w(i+1)=w(i)^{-1}$. ("reduced" is standard terminology. Why not "irreducible" like with polynomials? I don't know, perhaps for variety) On the other hand, if such an i does exist then we say that a cancellation ([GRI] calls it "one-step reduction") is possible which is gives the $w^{\prime} \in \mathbb{W}$ with domain $\operatorname{len}(w)-2$ which is defined as $w^{\prime}(j)=w(j)$ if $j<i$ and $w^{\prime}(j)=w(j+2)$ if $j>=i$.

Obviously, starting with any $w \in \mathbb{W}$, after a finite number of cancellations we will arrive at a reduced $w^{\prime} \in \mathbb{W}$. For the construction of the free group the following result is crucial:
5. Proposition: For every $w \in \mathbb{W}$, there is a unique reduced $w^{\prime} \in \mathbb{W}$ which is obtained by a sequence of cancellations from w. In other words, regardless of the order in which we carry out any cancellations from w, we will always arrive at the same reduced w^{\prime}. This unique w^{\prime} will be denoted as $\mathfrak{r}(w)$.

Both [ROB] and [GRI] give a proof of the result and it's not hard to do as an exercise; it certainly strikes me as easier than the exercise in [ROB] which this work is about. $[\mathrm{ROB}]$ defines an equivalence relation on the set of all words as $w_{1} \sim w_{2}$ iff $\mathfrak{r}\left(w_{1}\right)=\mathfrak{r}\left(w_{2}\right)$ (this isn't his actual definition but it amounts to this) and the free group as the set of equivalence classes. This is a bit awkward for my purposes so I will follow the definition in [GRI] where the free group is the set of reduced words with the product defined as $w_{1} \cdot w_{2}=\mathfrak{r}\left(w_{1} \odot w_{2}\right)$. It's trivial to show that the two definitions give isomorphic groups. I will denote the free group over X by \mathbb{F} and, if I need to refer to a different set T, by $\mathbb{F}(T)$.

We identify \bar{X} with the set of words of length 1 . This way every $T \subseteq X$ defines a subset of \mathbb{F} and $\mathbb{F}(T)$ can be taken to be the subgroup of \mathbb{F} generated by T. From now on I will use G_{1} to refer to $\mathbb{F}(X \backslash Y)$ where Y is as it appears in $\mathbb{\Phi} 1$; I will use N to refer to the least normal subgroup of \mathbb{F} which contains Y. So the exercise in $[\mathrm{ROB}]$ wants us to prove that
6. Proposition: G_{1} is isomorphic to \mathbb{F} / N.

We set $\bar{Y}=Y \cup Y^{-1}$. It's easy to see that $\bar{X} \backslash \bar{Y}=(X \backslash Y) \cup(X \backslash Y)^{-1}$.
Now I will state the "intermediate result" I mentioned earlier:
7. Proposition: for every $x \in N$, if $\operatorname{len}(x)>0$ (i.e. if x is not the identity) then there exists some $i \in \operatorname{len}(x)$ such that $x(i) \in \bar{Y}$.

From now on I will denote by H the homomorphism which sends every $x \in G_{1}$ to $x \cdot N \in \mathbb{F} / N$.
8. Proposition: H is onto; assuming proposition $7, H$ is also $1-1$.

Proof: For the onto part it suffices to show that for every $x \in \mathbb{F}$ there exists some $x_{1} \in G_{1}$ such that $x_{1} \cdot N=x \cdot N$ which is equivalent to $x_{1}^{-1} \cdot x \in N$. We use induction on $\operatorname{len}(x)$. Assume it holds for every $x^{\prime} \in \mathbb{F}$ with len $\left(x^{\prime}\right)=n$ and assume that $\operatorname{len}(x)=n+1$. Let $x_{2} \in G_{1}$ be such that $\left.x_{2}^{-1} \cdot x\right|_{n} \in N$. Let $t=x(n)$.

If $t \in \bar{Y}$ then $x_{2}^{-1} \cdot x=\left(\left.x_{2}^{-1} \cdot x\right|_{n}\right) \cdot t \in N \cdot t=N$.
If $t \notin \bar{Y}$ then $t \in G_{1} \Rightarrow x_{2} \cdot t \in G_{1}$ and, because N is normal, $\left.t^{-1} \cdot x_{2}^{-1} \cdot x\right|_{n} \cdot t \in$ $N \Rightarrow t^{-1} \cdot x_{2}^{-1} \cdot x \in N \Rightarrow\left(x_{2} \cdot t\right)^{-1} \cdot x \in N$.

Now assume proposition 7. Let $x_{1}, x_{2} \in G_{1}$ be such that $x_{1} \cdot N=x_{2} \cdot N \Rightarrow$ $x_{2}^{-1} \cdot x_{1} \in N$. If $x_{2}^{-1} \cdot x_{1} \neq 1$ then there exists some $i \in \operatorname{len}\left(x_{2}^{-1} \cdot x_{1}\right)$ such that $\left(x_{2}^{-1} \cdot x_{1}\right)(i) \in \bar{Y}$. But this is impossible because x_{1} and x_{2} are sequences which only have elements from $(X \backslash Y) \cup(X \backslash Y)^{-1}=\bar{X} \backslash \bar{Y}$.

So now the sticky part is to prove proposition 7. Note that if we just wanted the result for the least subgroup of \mathbb{F} which contains Y then it would be trivial. But a normal subgroup N^{\prime} must also be closed under products of the form $t^{-1} \cdot x \cdot t$ for all $t \in \mathbb{F}$ and $x \in N^{\prime}$. On first look one cannot exclude the possibility that there is some clever way to arrange products of this sort in a way which ends up with a non empty sequence which is an element of N and contains no element from \bar{Y}. It could be that there exists some much more straightforward proof than what I have been able to find or it could be that Robinson considered the result intuitively obvious and in no need of a proof or it could be that he underestimated the difficulty of proving it. Towards the end of this work I will present a more direct approach. It works for some simple cases but I didn't manage to make it work for more complicated ones so I had to adopt a different line of attack.

2 Main course

9. Definitions: FS will denote the set of all finite subsets of \mathbb{N}; for $A \in \mathrm{FS}$, $\operatorname{card}(A)$ will be the size of A. For A, B in FS with the same size, $\mathrm{SI}(A, B)$ will mean the unique strictly increasing function from A to B. A generalised word is a function from some $A \in \mathrm{FS}$ to \bar{X} and the set of all generalised
words will be denoted by $\mathbb{G W}$. For any $x \in \mathbb{G} \mathbb{W}$, $\operatorname{dom}(x)$ is the domain of x i.e. the set in FS on which x is defined. If $x \in \mathbb{G} \mathbb{W}$ with $A=\operatorname{dom}(x)$ and for any $B \in \mathrm{FS}$ with $\operatorname{card}(A)=\operatorname{card}(B)$, the transfer of x from A to B, in notation $\operatorname{tr}(x, A, B)$, is defined as $\operatorname{tr}(x, A, B)=x \circ \mathrm{SI}(B, A)$. Obviously $\operatorname{tr}(x, A, B) \in \mathbb{G} \mathbb{W}$ and $\operatorname{dom}(\operatorname{tr}(x, A, B))=B$. In particular, for all $x \in \mathbb{G} \mathbb{W}, \operatorname{tr}(x, \operatorname{dom}(x), \operatorname{card}(\operatorname{dom}(x))) \in \mathbb{W}$. If for some $x \in \mathbb{G} \mathbb{W}$ there exist $i_{1}, i_{2} \in \operatorname{dom}(x)$ such that $i_{1}<i_{2}$ and there is no $j \in \operatorname{dom}(x)$ with $i_{1}<j<i_{2}$ and $x\left(i_{2}\right)=x\left(i_{1}\right)^{-1}$ then a cancellation is possible which gives a new element of $\mathbb{G W}$ which is the restriction of x to the set $\operatorname{dom}(x) \backslash\left\{i_{1}, i_{2}\right\}$. x will be called reduced if no cancellations are possible.

After the above niggling technicalities, we arrive at a more interesting definition:
10. Definitions: For every $x \in \mathbb{G} \mathbb{W}$ the support of x, in notation $\operatorname{su}(x)$, is the set $\{i \in \operatorname{dom}(x): x(i) \notin \bar{Y}\}$. A good pairing (GP) on x is an equivalence relation on $\operatorname{su}(x)$ which satisfies the following properties:

GP1: Every equivalence class has size 2 .
GP2: If $\left\{i_{1}, i_{2}\right\},\left\{j_{1}, j_{2}\right\}$ are equivalence classes with $i_{1}<j_{1}<i_{2}$ then $i_{1}<j_{2}<i_{2}$; so equivalence classes are "nested" in a certain way.
GP3: If $\left\{i_{1}, i_{2}\right\}$ is an equivalence class then $x\left(i_{2}\right)=x\left(i_{1}\right)^{-1}$.
GP4: If $\left\{i_{1}, i_{2}\right\}$ is an equivalence class with $i_{1}<i_{2}$ then there exists a $j \in \operatorname{dom}(x)$ with $i_{1}<j<i_{2}$ and $j \notin \operatorname{su}(x)$.

For the avoidance of doubt, if $\operatorname{su}(x)=\emptyset$ then x is considered to have a good pairing. If P is an equivalence relation which is a GP and $i \in \operatorname{su}(x)$ then $P(i)$ will denote the unique $j \in \operatorname{su}(x)$ such that $\{i, j\}$ is an equivalence class. The notation I will be using for GPs will be as a set of equivalence classes rather than as a set of ordered pairs.
11. Proposition: Let $x \in \mathbb{G W}$ be not reduced and assume that there exists a GP P on x. Then it is possible to perform a sequence of cancellations starting from x in such a way that the $x^{\prime} \in \mathbb{G} \mathbb{W}$ we reach at the end will also admit a GP P^{\prime}.
Proof: For the rest of the proof we fix $i_{0}, i_{0}^{\prime} \in \operatorname{dom}(x)$ such that $i_{0}<i_{0}^{\prime}$ and $x\left(i_{0}^{\prime}\right)=x\left(i_{0}\right)^{-1}$ and there is no $i \in \operatorname{dom}(x)$ with $i_{0}<i<i_{0}^{\prime}$. Note that $x\left(i_{0}^{\prime}\right)=x\left(i_{0}\right)^{-1}$ implies that $i_{0} \in \operatorname{su}(x) \Leftrightarrow i_{0}^{\prime} \in \operatorname{su}(x)$.

The notation $i \approx j$ will mean that $i, j \in \operatorname{dom}(x), i \neq j$ and there is no $i_{1} \in \operatorname{dom}(x)$ which is between i and j. So we have $i_{0} \approx i_{0}^{\prime}$. Note that if $i, j \in \operatorname{su}(x)$ and $i \approx j$ then GP4 implies that $\{i, j\}$ is not an equivalence class of P.

Case 1: $i_{0} \in \operatorname{su}(x)$.

From GP3 we have that $x\left(P\left(i_{0}\right)\right)=x\left(i_{0}\right)^{-1}=x\left(i_{0}^{\prime}\right)=x\left(P\left(i_{0}^{\prime}\right)\right)^{-1}$.
Case 1.1: $i_{0}<P\left(i_{0}\right)$. From the assumptions that $i_{0}<i_{0}^{\prime}, i_{0} \approx i_{0}^{\prime}$ and GP2 it follows that $i_{0}<i_{0}^{\prime}<P\left(i_{0}^{\prime}\right)<P\left(i_{0}\right)$.

Case 1.1.1: $P\left(i_{0}\right) \approx P\left(i_{0}^{\prime}\right)$. This implies that a cancellation between $x\left(P\left(i_{0}\right)\right)$ and $x\left(P\left(i_{0}^{\prime}\right)\right)$ is also possible. So we do the cancellations between $x\left(i_{0}\right)$ and $x\left(i_{0}^{\prime}\right)$ and $x\left(P\left(i_{0}\right)\right)$ and $x\left(P\left(i_{0}^{\prime}\right)\right)$ and we obtain $x^{\prime} \in \mathbb{G} \mathbb{W}$ with

$$
\operatorname{dom}\left(x^{\prime}\right)=\operatorname{dom}(x) \backslash\left\{i_{0}, i_{0}^{\prime}, P\left(i_{0}\right), P\left(i_{0}^{\prime}\right)\right\}
$$

and

$$
P^{\prime}=P \backslash\left\{\left\{i_{0}, P\left(i_{0}\right)\right\},\left\{i_{0}^{\prime}, P\left(i_{0}^{\prime}\right)\right\}\right\}
$$

It is mechanical to check that P^{\prime} satisfies GP1-GP4.
Case 1.1.2: It does not hold that $P\left(i_{0}\right) \approx P\left(i_{0}^{\prime}\right)$. We want to prove that there exists a $j_{0} \in \operatorname{dom}(x)$ such that $P\left(i_{0}^{\prime}\right)<j_{0}<P\left(i_{0}\right)$ and $j_{0} \notin \operatorname{su}(x)$. Take some $i_{1} \in \operatorname{dom}(x)$ with $P\left(i_{0}^{\prime}\right)<i_{1}<P\left(i_{0}\right)$. If $i_{1} \notin \mathrm{su}(x)$, we're done. Otherwise it is also the case that $P\left(i_{0}^{\prime}\right)<P\left(i_{1}\right)<P\left(i_{0}\right)$ because every other possibility leads to a contradiction using GP2. Then GP4 gives us the j_{0} we want.

We define x^{\prime} to be the restriction of x to the set

$$
\operatorname{dom}(x) \backslash\left\{i_{0}, i_{0}^{\prime}\right\}
$$

and

$$
P^{\prime}=\left(P \backslash\left\{\left\{i_{0}, P\left(i_{0}\right)\right\},\left\{i_{0}^{\prime}, P\left(i_{0}^{\prime}\right)\right\}\right\}\right) \cup\left\{P\left(i_{0}\right), P\left(i_{0}^{\prime}\right)\right\}
$$

It is mechanical to check that P^{\prime} satisfies GP1-GP4; in particular j_{0} ensures that GP4 is satisfied.

Case 1.2: $P\left(i_{0}\right)<i_{0}$.
Case 1.2.1: $P\left(i_{0}^{\prime}\right)<i_{0}^{\prime}$ which implies that $P\left(i_{0}^{\prime}\right)<P\left(i_{0}\right)<i_{0}<i_{0}^{\prime}$.
Case 1.2.1.1: $P\left(i_{0}\right) \approx P\left(i_{0}^{\prime}\right)$. This is the symmetrical of case 1.1.1 and x^{\prime} and P^{\prime} are defined in the same manner.

Case 1.2.1.2: It does not hold that $P\left(i_{0}\right) \approx P\left(i_{0}^{\prime}\right)$. This is the symmetrical of case 1.1.2 and x^{\prime} and P^{\prime} are defined in the same manner.

Case 1.2.2: $i_{0}^{\prime}<P\left(i_{0}^{\prime}\right) . x^{\prime}$ and P^{\prime} are defined as in case 1.1.2.
Case 2: $i_{0} \notin \operatorname{su}(x)$. Let $n=\operatorname{card}(\operatorname{dom}(x))$ and $f=\operatorname{SI}(\operatorname{dom}(x), n)$. Let $A=\left\{i \in \operatorname{dom}(x): i<i_{0}\right.$ and for all $i_{1} \in \operatorname{dom}(x),\left(i \leq i_{1}<i_{0} \Rightarrow\left(i_{1} \in \operatorname{su}(x)\right.\right.$ and $\left.\left.f\left(i_{0}\right)-f\left(i_{1}\right)=f\left(P\left(i_{1}\right)\right)-f\left(i_{0}^{\prime}\right)\right)\right)$.

I will give here a specific example to help the reader visualise what's happening. Assume for a moment that $x=\left\langle y_{0}, y_{1}, y_{2}, y_{3}, y_{3}^{-1}, y_{2}^{-1}, y_{1}^{-1}, y_{4}, y_{0}^{-1}\right\rangle$. So $\operatorname{dom}(x)=n=9$. Assume that $\operatorname{su}(x)=\{0,1,2,5,6,8\}$. If we set $P=\{\{0,8\},\{1,6\},\{2,5\}\}$, it is a GP. Let $i_{0}=3$ and $i_{0}^{\prime}=4$. Then $A=\{1,2\}$. With all this in place, note that if we simply cancel out y_{3} with y_{3}^{-1} then the 2 elements of the equivalence class $\{2,5\}$ will be next to each other (i.e. $2 \approx 5$) so GP4 will no longer be true. So then we must also cancel out $x(2)$ with $x(5)$ and finally $x(1)$ with $x(6)$.

This should make clear the gist of things. So now we can return to the proof.
Case 2.1: A is not empty and let i_{3} be its least element. This means that $A=\left\{i \in \operatorname{dom}(x): i_{3} \leq i<i_{0}\right\}$. Let $j_{3}=f\left(i_{3}\right)$ and $j_{0}=f\left(i_{0}\right)$. We do in sequence the cancellations $x\left(i_{0}\right)$ with $x\left(i_{0}^{\prime}\right)$ and then $x\left(f^{-1}\left(j_{0}-j\right)\right)$ with $x\left(f^{-1}\left(j_{0}+1+j\right)\right)$ where j takes the values $1, \ldots, j_{0}-j_{3}$. The x^{\prime} which results has domain $\operatorname{dom}\left(x^{\prime}\right)=\left\{i \in \operatorname{dom}(x): i<i_{3}\right.$ or $\left.i>P\left(i_{3}\right)\right\}$. We set $P^{\prime}=P \backslash\{\{i, P(i)\}: i \in A\}$.

The only non trivial thing is to prove that P^{\prime} satisfies GP4. Let $B=\{i \in$ $\operatorname{su}\left(x^{\prime}\right): i<i_{3}$ and $\left.P(i)>P\left(i_{3}\right)\right\}$. If for an equivalence class $\left\{k_{1}, k_{2}\right\}$ of P^{\prime} we have $\left\{k_{1}, k_{2}\right\} \cap B=\emptyset$ then it is immediate that there exists some $k_{3} \in \operatorname{dom}\left(x^{\prime}\right)$ between k_{1} and k_{2} with $k_{3} \notin \operatorname{su}\left(x^{\prime}\right)$. So assume that B is not empty and let i_{4} be its greatest element.

Case 2.1.1: There exists some $i_{5} \in \operatorname{dom}\left(x^{\prime}\right)$ with $i_{4}<i_{5}<i_{3}$. If $i_{5} \notin \operatorname{su}\left(x^{\prime}\right)$ then we immediately have what we want. If $i_{5} \in \operatorname{su}\left(x^{\prime}\right)$ then $i_{5} \notin B$ therefore $i_{4}<P\left(i_{5}\right)<i_{3}$ and there exists some $k_{3} \in \operatorname{dom}\left(x^{\prime}\right)$ between i_{5} and $P\left(i_{5}\right)$ with $k_{3} \notin \operatorname{su}\left(x^{\prime}\right)$.

Case 2.1.2: $i_{4} \approx i_{3}$ in $\operatorname{dom}(x)$. Since $i_{4} \notin A$, it follows that $f\left(i_{0}\right)-f\left(i_{4}\right) \neq$ $f\left(P\left(i_{4}\right)\right)-f\left(i_{0}^{\prime}\right)$ therefore it is not the case that $P\left(i_{4}\right) \approx P\left(i_{3}\right)$ in $\operatorname{dom}(x)$ so there exists $i_{7} \in \operatorname{dom}\left(x^{\prime}\right)$ with $P\left(i_{3}\right)<i_{7}<P\left(i_{4}\right)$ and the rest of the argument should be familiar to the reader by now.

Case 2.2: A is empty. x^{\prime} is defined as the restriction of x to the set $\operatorname{dom}(x) \backslash$ $\left\{i_{0}, i_{0}^{\prime}\right\}$ and $P^{\prime}=P$. Proving that P^{\prime} satisfies GP4 is an easier version of the argument in case 2.1.
12. Corollary: If some $x \in \mathbb{G} \mathbb{W}$ is not reduced and has a GP P then by a sequence of cancellations from x we get a reduced $x^{\prime} \in \mathbb{G} \mathbb{W}$ which has some GP P^{\prime}.
13. Definition: Let $x \in \mathbb{G} \mathbb{W}$ with a GP P. Let $A=\operatorname{dom}(x)$ and let $B \subset \mathbb{N}$ with $\operatorname{card}(A)=\operatorname{card}(B)$. Let $f=\mathrm{SI}(B, A)$ and $x^{\prime}=\operatorname{tr}(x, A, B)$. Obviously $\operatorname{su}\left(x^{\prime}\right)=\{i \in B: f(i) \in \operatorname{su}(x)\}$. We define $\operatorname{tr}(P, A, B)$ to be the equivalence relation on $\operatorname{su}\left(x^{\prime}\right)$ which has the set of equivalence classes
$\left\{\left\{i_{1}, i_{2}\right\}:\left\{f\left(i_{1}\right), f\left(i_{2}\right)\right\} \in P\right\}$. Then it's obvious that $\operatorname{tr}(P, A, B)$ is a GP for x^{\prime}.
14. Proposition: If some $x \in \mathbb{F}$ has a GP then $\mathfrak{r}(x)$ also has a GP.

Proof: Clearly for every $x_{1} \in \mathbb{G} \mathbb{W}$ with $A=\operatorname{dom}\left(x_{1}\right)$ and every $B \subset \mathbb{N}$ with $\operatorname{card}(A)=\operatorname{card}(B), x_{1}$ is reduced iff $\operatorname{tr}\left(x_{1}, A, B\right)$ is reduced.

So, if $x \in \mathbb{F}$ has a GP, let $x^{\prime} \in \mathbb{G W}$ be as given by corollary 12 . Then $\mathfrak{r}(x)=\operatorname{tr}\left(x^{\prime}, \operatorname{dom}\left(x^{\prime}\right), \operatorname{card}\left(\operatorname{dom}\left(x^{\prime}\right)\right)\right)$ has a GP.
15. Definition: Let $x_{1}, x_{2} \in \mathbb{G} \mathbb{W}$. We define the concatenation of x_{1} and x_{2}, in notation $x_{1} \odot x_{2}$, as follows: for $i=1,2$ let $A_{i}=\operatorname{dom}\left(x_{i}\right)$ and $n_{i}=\operatorname{card}\left(A_{i}\right) . \quad x_{1} \odot x_{2}$ has domain $n_{1}+n_{2}$ and for each j in the domain, $\left(x_{1} \odot x_{2}\right)(j)=\operatorname{tr}\left(x_{1}, A_{1}, n_{1}\right)(j)$ if $j<n_{2}$, otherwise $\left(x_{1} \odot x_{2}\right)(j)=$ $\operatorname{tr}\left(x_{2}, A_{2}, n_{2}\right)\left(j-n_{1}\right)$.

It's easy to see that concatenation is associative.
16. Proposition: Let $x_{1}, x_{2} \in \mathbb{G} \mathbb{W}$ with GPs P_{1} and P_{2} respectively. Then the following hold:

1. $x_{1} \odot x_{2}$ has a GP.
2. If $\operatorname{dom}\left(x_{1}\right) \neq \emptyset$ then for every $t \in \bar{X} \backslash \bar{Y}, t \odot x_{1} \odot t^{-1}$ has a GP.
3. For every $t \in \bar{Y}, t \odot x_{1}$ and $x_{1} \odot t$ have a GP.

Proof: Let $A_{1}=\operatorname{dom}\left(x_{1}\right), n_{1}=\operatorname{card}\left(A_{1}\right), x_{1}^{\prime}=\operatorname{tr}\left(x_{1}, A_{1}, n_{1}\right)$ and $P_{1}^{\prime}=$ $\operatorname{tr}\left(P_{1}, A_{1}, n_{1}\right)$.

1. Let $A_{2}=\operatorname{dom}\left(x_{2}\right), n_{2}=\operatorname{card}\left(A_{2}\right), B_{2}=\left\{i+n_{1}: i \in n_{2}\right\}, x_{2}^{\prime}=$ $\operatorname{tr}\left(x_{2}, A_{2}, B_{2}\right)$ and $P_{2}^{\prime}=\operatorname{tr}\left(P_{2}, A_{2}, B_{2}\right)$. Then $x_{1} \odot x_{2}=x_{1}^{\prime} \cup x_{2}^{\prime}$ and $P_{1}^{\prime} \cup P_{2}^{\prime}$ is a GP for $x_{1} \odot x_{2}$.
2. Let $x^{\prime}=t \odot x_{1} \odot t^{-1}$. Then $\operatorname{dom}\left(x^{\prime}\right)=n_{1}+2$ and $x^{\prime}(0)=t, x^{\prime}\left(n_{1}+1\right)=t^{-1}$ and for i with $1 \leq i \leq n_{1}, x^{\prime}(i)=x_{1}^{\prime}(i-1)$. Let $B=\left\{i+1: i \in n_{1}\right\}$ and $P^{\prime}=\operatorname{tr}\left(P_{1}, A_{1}, B\right)$. Then $P^{\prime} \cup\left\{0, n_{1}+1\right\}$ is a GP for x^{\prime}.

3. Trivial.

17. Proposition: Let $x_{1}, x_{2} \in \mathbb{F}$ with GPs P_{1} and P_{2} respectively. Then the following elements of \mathbb{F} also have a GP:
18. $x_{1} \cdot x_{2}$.
19. for every $t \in \bar{X} \backslash \bar{Y}, t \cdot x_{1} \cdot t^{-1}$.
20. for every $t \in \bar{Y}, t \cdot x_{1}$ and $x_{1} \cdot t$.

Proof: 1 and 3 are immediate from propositions 16, 14 and the definition of multiplication on \mathbb{F}.

For 2 , if x_{1} is the identity of \mathbb{F}, it is immediate; otherwise we have $t \cdot x_{1} \cdot t^{-1}=$ $\mathfrak{r}\left(\mathfrak{r}\left(t \odot x_{1}\right) \odot t^{-1}\right)=\mathfrak{r}\left(t \odot x_{1} \odot t^{-1}\right)$. The last equality follows from the proof of proposition 2.5.6 in [GRI]. Then we use again propositions 16 and 14 to get the result we want.
18. Definitions: A formation sequence is a function $f: n \rightarrow \mathbb{F}$ (where $n \in \mathbb{N}$) such that for every $i \in n$ at least one of the following holds:

1. $f(i)$ is the identity of \mathbb{F}.
2. There exist $i_{1}, i_{2} \in n$ with $i_{1}<i$ and $i_{2}<i$ such that $f(i)=f\left(i_{1}\right)$. $f\left(i_{2}\right)$.
3. There exist $i_{1} \in n$ with $i_{1}<i$ and $t \in \bar{X} \backslash \bar{Y}$ such that $f(i)=$ $t \cdot f\left(i_{1}\right) \cdot t^{-1}$.
4. There exist $i_{1} \in n$ with $i_{1}<i$ and $t \in \bar{Y}$ such that $f(i)=t \cdot f\left(i_{1}\right)$ or $f(i)=f\left(i_{1}\right) \cdot t$.

An element x of \mathbb{F} will be called well-formed if there exists some formation sequence f and an $i \in \operatorname{dom}(f)$ such that $f(i)=x$.
19. Proposition: For every $x \in \mathbb{F}, x \in N$ iff x is well-formed.

Proof: To prove that if x is well-formed then $x \in N$ take some formation sequence f and an $i \in \operatorname{dom}(f)$ such that $f(i)=x$ and use induction on i.

For the inverse, note first that the concatenation of two formation sequences is again a formation sequence which implies that the set of well-formed elements is closed under multiplication. If $f: n \rightarrow \mathbb{F}$ is a formation sequence then we can define $f^{\prime}: n \rightarrow \mathbb{F}$ with $f^{\prime}(i)=f(i)^{-1}$ for all $i \in n$. Clearly f^{\prime} is also a formation sequence which shows that the set of well-formed elements is closed under inverses. Let x be well-formed and $x^{\prime} \in \mathbb{F}$. To prove that $x^{\prime} \cdot x \cdot x^{\prime-1}$ is well-formed, use induction on the length of x^{\prime}.

So the set of well-formed elements is a normal subgroup of \mathbb{F} which contains \bar{Y}.

Corollary: Every $x \in N$ has a GP.
Proof: It follows from propositions 17 and 19.
Corollary: Proposition 7 holds.
And this is a proof/solution of the exercise in [ROB] I can believe in! But it turns out that we can prove some other interesting results.
20. Definitions: A cancellations-free formation sequence (CFFS for short) is a function $f: n \rightarrow \mathbb{F}$ (where $n \in \mathbb{N}$) such that for every $i \in n$ at least one of the following holds:

1. $f(i)$ is the identity of \mathbb{F}.
2. There exist $i_{1}, i_{2} \in n$ with $i_{1}<i$ and $i_{2}<i$ such that $f(i)=f\left(i_{1}\right) \cdot f\left(i_{2}\right)=f\left(i_{1}\right) \odot f\left(i_{2}\right)$.
3. There exist $i_{1} \in n$ with $i_{1}<i$ and $t \in \bar{X} \backslash \bar{Y}$ such that $f(i)=t \cdot f\left(i_{1}\right) \cdot t^{-1}=t \odot f\left(i_{1}\right) \odot t^{-1}$.
4. There exist $i_{1} \in n$ with $i_{1}<i$ and $t \in \bar{Y}$ such that $f(i)=t \cdot f\left(i_{1}\right)=t \odot f\left(i_{1}\right)$ or $f(i)=f\left(i_{1}\right) \cdot t=f\left(i_{1}\right) \odot t$.

An element x of \mathbb{F} will be called cancellations-free well-formed (CFWF) if there exists some CFFS f and an $i \in \operatorname{dom}(f)$ such that $f(i)=x$.
21. Proposition: If some $x \in \mathbb{F}$ has a GP then x is CFWF.

Proof: Assume that it holds for all $x^{\prime} \in \mathbb{F}$ with $\operatorname{len}\left(x^{\prime}\right)<\operatorname{len}(x)$. If $\operatorname{su}(x)=\emptyset$ then obviously x is CFWF.

Assume that $\operatorname{su}(x) \neq \emptyset$ and let $i_{0}=\min (\operatorname{su}(x))$. Let P be a GP for x. Let $n=\operatorname{len}(x)$.

Case 1: $i_{0}=0$ and $P\left(i_{0}\right)=n-1$. Let $A=\{i \in n: 0<i<n-1\}$.
Let $x_{1}=\left.x\right|_{A}$ and $P_{1}=P \backslash\{0, n-1\}$. Then $x_{1} \in \mathbb{G W}$ and P_{1} is a GP for x_{1}. Let $x_{2}=\operatorname{tr}\left(x_{1}, A, n-2\right)$ and $P_{2}=\operatorname{tr}\left(P_{1}, A, n-2\right)$. The sequence x_{2} was obtained by taking successive elements from x and $x \in \mathbb{F}$ so no cancellations are possible in x_{2} therefore $x_{2} \in \mathbb{F}$. From the remark in $\mathbb{\top} 13, P_{2}$ is a GP for x_{2} so, from the inductive hypothesis, x_{2} is CFWF so there exist $m \in \mathbb{N}$ and $f: m \rightarrow \mathbb{F}$ and $j \in m$ such that f is a CFFS and $f(j)=x_{2}$. Then $x=x(0) \cdot x_{2} \cdot x(n-1)=x(0) \odot x_{2} \odot x(n-1)$ so clearly there is also a CFFS for x.

Case 2: $i_{0}=0$ and $P\left(i_{0}\right)<n-1$.
Let $A=\left\{i \in n: i \leq P\left(i_{0}\right)\right\}$ and $B=\left\{i \in n: P\left(i_{0}\right)<i\right\}$. Let $n_{2}=\operatorname{card}(B)$. Let $x_{1}=\left.x\right|_{A}$ and $x_{2}=\left.x\right|_{B}$. From GP2 it follows that if $\{i, j\}$ in an equivalence class of P then $\{i, j\} \subseteq A$ or $\{i, j\} \subseteq B$. Let $P_{1}=P \cap A \times A$ and $P_{2}=P \cap B \times B$. Then P_{1} is a GP for x_{1} and P_{2} is a GP for x_{2}. Let $x_{3}=\operatorname{tr}\left(x_{2}, B, n_{2}\right)$ and $P_{3}=\operatorname{tr}\left(P_{2}, B, n_{2}\right)$. Then $x_{3} \in \mathbb{F}$ and P_{3} is a GP for x_{3}. From the inductive hypothesis, x_{1} and x_{3} are CFWF and $x=x_{1} \cdot x_{3}=x_{1} \odot x_{3}$ therefore x is also CFWF.

Case 3: $i_{0}>0$.
Let $A=\left\{i \in n: i<i_{0}\right\}$ and $B=\left\{i \in n: i_{0} \leq i\right\}$. The remaining steps are the same as in case 2 .

Finally, we collect together all the previous results.
22. Proposition: For every $x \in \mathbb{F}$ the following are equivalent:

1. $x \in N$.
2. There exists a GP for x.
3. x is CFWF.
4. x is well-formed.

Proof: $1 \Rightarrow 2$: This is the corollary to proposition 19 .
$2 \Rightarrow 3$: Proposition 21.
$3 \Rightarrow 4$: Immediate from the definitions.
$4 \Rightarrow$ 1: Proposition 19.
23. Example: Let $X=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ and $Y=\left\{s_{1}, s_{2}, s_{3}\right\}$. Let $x=$ $\left\langle s_{1}, s_{4}^{-1}, s_{2}, s_{4}^{-1}, s_{3}, s_{4}, s_{4}\right\rangle$. One formation sequence f for x has 8 elements and is
$f(0)=1$
$f(1)=s_{1} \cdot f(0)=\left\langle s_{1}\right\rangle$
$f(2)=s_{4} \cdot f(1) \cdot s_{4}^{-1}=\left\langle s_{4}, s_{1}, s_{4}^{-1}\right\rangle$
$f(3)=s_{3} \cdot f(0)=\left\langle s_{3}\right\rangle$
$f(4)=s_{4}^{-1} \cdot f(3) \cdot s_{4}=\left\langle s_{4}^{-1}, s_{3}, s_{4}\right\rangle$
$f(5)=s_{2} \cdot f(4)=\left\langle s_{2}, s_{4}^{-1}, s_{3}, s_{4}\right\rangle$
$f(6)=f(2) \cdot f(5)=\left\langle s_{4}, s_{1}, s_{4}^{-1}, s_{2}, s_{4}^{-1}, s_{3}, s_{4}\right\rangle$
$f(7)=s_{4}^{-1} \cdot f(6) \cdot s_{4}=x$

The product which gives $f(7)$ has cancellations. Proposition 22 tells us that there exists also a CFFS for x. The reader may find it interesting to come up with one.

3 The direct approach

This is another way to try and prove proposition 7. As I've said earlier, I couldn't manage to make it work in general but I'm including it because I'm curious whether any readers may find a way to make it work in general.
24. Definitions: For every $x \in \mathbb{F}$ and every $m \leq \operatorname{len}(x)$, ini (x, m) will mean the subsequence of x which has the first m elements and fin (x, m) will mean the subsequence of x which has the final m elements. We have the identity that for $m_{1}, m_{2} \in \mathbb{N}$ with $m_{1}+m_{2}=\operatorname{len}(x)$,

$$
x=\operatorname{ini}\left(x, m_{1}\right) \cdot \operatorname{fin}\left(x, m_{2}\right)=\operatorname{ini}\left(x, m_{1}\right) \odot \operatorname{fin}\left(x, m_{2}\right)
$$

For all $x_{1}, x_{2} \in \mathbb{F}$, $\operatorname{nce}\left(x_{1}, x_{2}\right)$ will mean $\max \left\{m \in \mathbb{N}: m \leq \operatorname{len}\left(x_{1}\right)\right.$ and $m \leq \operatorname{len}\left(x_{2}\right)$ and $\left.\operatorname{fin}\left(x_{1}, m\right)=\operatorname{ini}\left(x_{2}, m\right)^{-1}\right\}$. "nce" stands for "number of
cancelled elements" and tells us how many cancellations will happen when we form the product $x_{1} \cdot x_{2}$. More precisely, if for some x_{1}, x_{2} we set $m_{0}=$ nce $\left(x_{1}, x_{2}\right)$ and also $x_{3}=\operatorname{ini}\left(x_{1}, \operatorname{len}\left(x_{1}\right)-m_{0}\right), x_{4}=\operatorname{fin}\left(x_{1}, m_{0}\right), x_{5}=$ $\operatorname{ini}\left(x_{2}, m_{0}\right)$ and $x_{6}=\operatorname{fin}\left(x_{2}, \operatorname{len}\left(x_{2}\right)-m_{0}\right)$ then
$x_{1} \cdot x_{2}=\mathfrak{r}\left(x_{1} \odot x_{2}\right)=\mathfrak{r}\left(x_{3} \odot x_{4} \odot x_{5} \odot x_{6}\right)=\mathfrak{r}\left(x_{3} \odot x_{4} \odot x_{4}^{-1} \odot x_{6}\right)=$ $\mathfrak{r}\left(x_{3} \odot x_{6}\right)=x_{3} \odot x_{6}=x_{3} \cdot x_{6}$.

A useful fact is that nce $\left(x_{1}, x_{2}\right)=\operatorname{nce}\left(x_{2}^{-1}, x_{1}^{-1}\right)$.
A $x \in \mathbb{F}$ will be called pure if all the elements of x are in \bar{Y}.
25. Proposition: Let $x_{1}, x_{2} \in \mathbb{F}$ be such that nce $\left(x_{1}, x_{2}\right)=0$ and x_{2} pure. Then $x_{1} \cdot x_{2}^{-1} \cdot x_{1}^{-1}$ has at least len $\left(x_{2}\right)$ elements from \bar{Y}.
Proof: Assume that it holds for all $x_{1}^{\prime}, x_{2}^{\prime} \in \mathbb{F}$ with $\operatorname{len}\left(x_{1}^{\prime}\right)+\operatorname{len}\left(x_{2}^{\prime}\right)<$ $\operatorname{len}\left(x_{1}\right)+\operatorname{len}\left(x_{2}\right)$.

Obviously it holds if len $\left(x_{2}\right)=0$. Assume that $\operatorname{len}\left(x_{2}\right)>0$.
Let $m_{0}=\operatorname{nce}\left(x_{1}, x_{2}^{-1}\right), x_{3}=\operatorname{ini}\left(x_{1}, \operatorname{len}\left(x_{1}\right)-m_{0}\right), x_{4}=\operatorname{fin}\left(x_{1}, m_{0}\right)$ and $x_{5}=\operatorname{fin}\left(x_{2}^{-1}, \operatorname{len}\left(x_{2}\right)-m_{0}\right)$. Then $x_{1} \cdot x_{2}^{-1} \cdot x_{1}^{-1}=x_{3} \cdot x_{4} \cdot x_{4}^{-1} \cdot x_{5} \cdot x_{1}^{-1}=$ $x_{3} \cdot x_{5} \cdot x_{1}^{-1}$.

Assume len $\left(x_{5}\right)>0$. nce $\left(x_{1}, x_{2}\right)=0 \Rightarrow \operatorname{nce}\left(x_{2}^{-1}, x_{1}^{-1}\right)=0$ and $x_{2}^{-1}=$ $x_{4}^{-1} \odot x_{5}$ therefore $x_{5} \cdot x_{1}^{-1}=x_{5} \odot x_{1}^{-1}$. Also, by the way x_{3} and x_{5} were defined, $x_{3} \cdot x_{5}=x_{3} \odot x_{5}$. So

$$
x_{3} \cdot x_{5} \cdot x_{1}^{-1}=x_{3} \odot x_{5} \odot x_{1}^{-1}=x_{3} \odot x_{5} \odot x_{4}^{-1} \odot x_{3}^{-1}
$$

which has at least $\operatorname{len}\left(x_{5}\right)+\operatorname{len}\left(x_{4}^{-1}\right)$ elements from $\bar{Y} . \operatorname{len}\left(x_{5}\right)+\operatorname{len}\left(x_{4}^{-1}\right)=$ $\operatorname{len}\left(x_{2}^{-1}\right)=\operatorname{len}\left(x_{2}\right)$.
Assume now that len $\left(x_{5}\right)=0$. Then $x_{2}^{-1}=x_{4}^{-1}$ and $x_{3} \cdot x_{5} \cdot x_{1}^{-1}=x_{3} \cdot x_{1}^{-1}=$ $x_{3} \cdot x_{4}^{-1} \cdot x_{3}^{-1}$. Then x_{4} is pure, $\operatorname{nce}\left(x_{3}, x_{4}\right)=0$ and $\operatorname{len}\left(x_{3}\right)+\operatorname{len}\left(x_{4}\right)=$ $\operatorname{len}\left(x_{1}\right)<\operatorname{len}\left(x_{1}\right)+\operatorname{len}\left(x_{2}\right)$. Therefore, from the inductive hypothesis, x_{3}. $x_{4}^{-1} \cdot x_{3}^{-1}$ has at least $\operatorname{len}\left(x_{4}\right)=\operatorname{len}\left(x_{2}\right)$ elements from \bar{Y}.
26. Proposition: Let $x, y \in \mathbb{F}$ with y pure. Set $n=\operatorname{len}(y), m=\operatorname{nce}(x, y)$ and $m^{\prime}=\operatorname{nce}\left(\operatorname{fin}(y, n-m), x^{-1}\right)$. Then $x \cdot y \cdot x^{-1}$ has at least $n-m-m^{\prime}+\left|m-m^{\prime}\right|$ elements from \bar{Y}. Furthermore, $n-m-m^{\prime}+\left|m-m^{\prime}\right|=0$ iff $x \cdot y \cdot x^{-1}=1$. Proof: Case 1: $m+m^{\prime}<n$ and $m \geq m^{\prime}$.

Let $x_{1}=\operatorname{ini}(x, \operatorname{len}(x)-m), x_{2}=\operatorname{ini}\left(\operatorname{fin}(x, m), m-m^{\prime}\right)$ and $x_{3}=\operatorname{fin}\left(x, m^{\prime}\right)$. So we have $x=x_{1} \odot x_{2} \odot x_{3}$. Let $y_{1}=\operatorname{ini}(y, m), y_{2}=\operatorname{ini}(\operatorname{fin}(y, n-m), n-$ $\left.m-m^{\prime}\right)$ and $y_{3}=\operatorname{fin}\left(y, m^{\prime}\right)$. Then

$$
x \cdot y \cdot x^{-1}=x_{1} \cdot\left(x_{2} \cdot x_{3} \cdot y_{1}\right) \cdot y_{2} \cdot\left(y_{3} \cdot x_{3}^{-1}\right) \cdot x_{2}^{-1} \cdot x_{1}^{-1}=x_{1} \cdot y_{2} \cdot x_{2}^{-1} \cdot x_{1}^{-1}
$$

By the definitions of x_{1}, x_{2}, y_{2} it follows that $x_{1} \cdot y_{2}=x_{1} \odot y_{2}$ and $y_{2} \cdot x_{2}^{-1}=$ $\underline{y_{2}} \odot x_{2}^{-1}$. So $x_{1} \cdot y_{2} \cdot x_{2}^{-1} \cdot x_{1}^{-1}$ has at least len $\left(y_{2}\right)+\operatorname{len}\left(x_{2}^{-1}\right)$ elements from \bar{Y} so $n-m-m^{\prime}+\left|m-m^{\prime}\right|$ elements.

Case 2: $m+m^{\prime}=n$ and $m \geq m^{\prime}$.
We define $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ as in case 1 . Now $\operatorname{len}\left(y_{2}\right)=0$ so $y_{2}=1$ therefore

$$
x \cdot y \cdot x^{-1}=x_{1} \cdot x_{2}^{-1} \cdot x_{1}^{-1}
$$

nce $\left(x_{1}, x_{2}\right)=0$ because they are adjacent subsequences of x so from proposition 25 it follows that $x_{1} \cdot x_{2}^{-1} \cdot x_{1}^{-1}$ has at least len $\left(x_{2}\right)$ elements from \bar{Y} which makes it $m-m^{\prime}=\left|m-m^{\prime}\right|$ elements.

Case 3: $m+m^{\prime}<n$ and $m<m^{\prime}$.
Let $x_{1}=\operatorname{ini}\left(x, \operatorname{len}(x)-m^{\prime}\right), x_{2}=\operatorname{ini}\left(\operatorname{fin}\left(x, m^{\prime}\right), m^{\prime}-m\right)$ and $x_{3}=\operatorname{fin}(x, m)$. Again we have $x=x_{1} \odot x_{2} \odot x_{3}$. Let $y_{1}=\operatorname{ini}(y, m), y_{2}=\operatorname{ini}(\operatorname{fin}(y, n-$ $\left.m), n-m-m^{\prime}\right)$ and $y_{3}=\operatorname{fin}\left(y, m^{\prime}\right)$. Then

$$
x \cdot y \cdot x^{-1}=x_{1} \cdot x_{2} \cdot\left(x_{3} \cdot y_{1}\right) \cdot y_{2} \cdot\left(y_{3} \cdot x_{3}^{-1} \cdot x_{2}^{-1}\right) \cdot x_{1}^{-1}=x_{1} \cdot x_{2} \cdot y_{2} \cdot x_{1}^{-1}
$$

As with case 1 we have that $x_{1} \cdot x_{2} \cdot y_{2} \cdot x_{1}^{-1}=x_{1} \odot x_{2} \odot y_{2} \odot x_{1}^{-1}$ which has at least len $\left(x_{2}\right)+\operatorname{len}\left(y_{2}\right)=m^{\prime}-m+n-m-m^{\prime}=n-2 \cdot m$ elements from \bar{Y}.

Case 4: $m+m^{\prime}=n$ and $m<m^{\prime}$.
The overall pattern should be clear by now so I'll leave that for the reader.

The next step in this approach was to try and prove a proposition analogous to 26 but more complicated. After experimenting with various things, the most promising seemed to be

Let $x_{1}, x_{2}, x_{3}, y_{1}, y_{2} \in \mathbb{F}$ with y_{1}, y_{2} pure. Then

$$
x_{1} \cdot x_{2} \cdot y_{1} \cdot x_{2}^{-1} \cdot x_{3} \cdot y_{2} \cdot x_{3}^{-1} \cdot x_{1}^{-1}
$$

is either the identity or has at least one element from \bar{Y}.
The approach of the proof was supposed to be analogous to proposition 26 , namely break $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}$ into subsequences which cancel out with each other when you form the product above and then distinguish cases based on the relative lengths of these subsequences. I could make some of these cases work but with others I got stuck and, interestingly, not the ones which seemed most complicated on first look. I started considering different approaches and eventually came up with the one in the previous section.

4 Chuck Norris facts

To the best of my knowledge, there are no Chuck Norris facts associated with this work.

Spiros Bousbouras, September 2023.
You can contact me at
$\left(@^{-1} \cdot u^{-1} \cdot o^{-1} \cdot b^{-1} \cdot i^{-1} \cdot p^{-1} \cdot s^{-1}\right)^{-1} \cdot\left((c \cdot o \cdot m)^{-1} \cdot \cdot^{-1}(g \cdot m \cdot a \cdot i \cdot l)^{-1}\right)^{-1}$

