
1 Introduction

The purpose of this work is to give a detailed proof for an exercise which
appears in “A Course in the Theory of Groups, second edition” by Derek
Robinson, [ROB] from now on. The exercise appears on page 50 of the book
and goes as follows:

1.

If F is a free group on a subset X and ∅ 6= Y ⊂ X, prove that
F/Y F is free on X \ Y .

I’m assuming here that the reader is already familiar with some basic defi-
nitions and facts about free groups (and groups in general) although I give
further down some of the precise definitions I will be using. “subset X” is
probably a typo and what was meant was “set X”. In the above the only
notation which is not totally standard if Y F which [ROB] calls the normal
closure of Y in F and defines as follows:

2. Definition: For a group F and any Y ⊆ F , the normal closure of Y in F
(in notation, Y F ) is the least normal subgroup of F which contains Y .

So the exercise wants us to prove that the free group generated by X \ Y ,
lets call it for now F ′, is isomorphic to the quotient group F/Y F . No hint
is given.

It seems obvious that the intended isomorphism is the one which sends a
word x ∈ F ′ to x · Y F . Proving that this is onto is easy enough. But how
to prove that it is 1-1? The only way I can think of is to prove a certain
intermediate result. Before I get to that, I need to fix the definition of a
free group. For this, I find the technicalities more convenient if I follow
the construction of a free group given in “Algebra” by Pierre Grillet ([GRI]
from now on) rather than the one in [ROB]. So now I will summarise the
construction. For all the details, the reader should consult any of the 2
books.

3. Start with a non empty set X. Fix a set X ′ with the same cardinality as
X so that X ∩X ′ = ∅ and fix a bijection from X to X ′. For every x ∈ X,
the image of x through the bijection will be denoted as x−1 and for every
x′ ∈ X ′, the inverse image of x′ through the bijection will be denoted as
x′−1. So in particular we have that for every x ∈ X ∪ X ′, (x−1)−1 = x.
Let X = X ∪X ′. We consider formal products of elements of X i.e. finite
sequences of elements of X. Such finite sequences, including the empty one,
will be called words (over X). We will denote the set of all such words by
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W or W(T ) if we want to refer to some set other than X. Formally, every
w ∈ W is a function from some n ∈ N to X. The domain of w (i.e. this n)
will be denoted by len(w).

4. We define a product on W: for all w1, w2, w1 � w2 will be the concate-
nation of w1 and w2. Obviously, len(w1 � w2) = len(w1) + len(w2).

A w ∈ W will be called reduced if there is no i ∈ len(w) such that i + 1 ∈
len(w) and w(i + 1) = w(i)−1. (“reduced” is standard terminology. Why
not “irreducible” like with polynomials? I don’t know, perhaps for variety)
On the other hand, if such an i does exist then we say that a cancellation
([GRI] calls it “one-step reduction”) is possible which is gives the w′ ∈ W
with domain len(w) − 2 which is defined as w′(j) = w(j) if j < i and
w′(j) = w(j + 2) if j >= i.

Obviously, starting with any w ∈ W, after a finite number of cancellations
we will arrive at a reduced w′ ∈ W. For the construction of the free group
the following result is crucial:

5. Proposition: For every w ∈W, there is a unique reduced w′ ∈W which is
obtained by a sequence of cancellations from w. In other words, regardless
of the order in which we carry out any cancellations from w, we will always
arrive at the same reduced w′. This unique w′ will be denoted as r(w).

Both [ROB] and [GRI] give a proof of the result and it’s not hard to do
as an exercise; it certainly strikes me as easier than the exercise in [ROB]
which this work is about. [ROB] defines an equivalence relation on the set
of all words as w1 ∼ w2 iff r(w1) = r(w2) (this isn’t his actual definition
but it amounts to this) and the free group as the set of equivalence classes.
This is a bit awkward for my purposes so I will follow the definition in [GRI]
where the free group is the set of reduced words with the product defined
as w1 · w2 = r(w1 � w2). It’s trivial to show that the two definitions give
isomorphic groups. I will denote the free group over X by F and, if I need
to refer to a different set T , by F(T ).

We identify X with the set of words of length 1. This way every T ⊆ X
defines a subset of F and F(T ) can be taken to be the subgroup of F generated
by T . From now on I will use G1 to refer to F(X\Y ) where Y is as it appears
in ¶1; I will use N to refer to the least normal subgroup of F which contains
Y . So the exercise in [ROB] wants us to prove that

6. Proposition: G1 is isomorphic to F/N .

We set Y = Y ∪ Y −1. It’s easy to see that X \ Y = (X \ Y ) ∪ (X \ Y )−1.
Now I will state the “intermediate result” I mentioned earlier:
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7. Proposition: for every x ∈ N , if len(x) > 0 (i.e. if x is not the identity)
then there exists some i ∈ len(x) such that x(i) ∈ Y .

From now on I will denote by H the homomorphism which sends every
x ∈ G1 to x ·N ∈ F/N .

8. Proposition: H is onto; assuming proposition 7, H is also 1-1.
Proof: For the onto part it suffices to show that for every x ∈ F there exists
some x1 ∈ G1 such that x1 ·N = x ·N which is equivalent to x−1

1 ·x ∈ N . We
use induction on len(x). Assume it holds for every x′ ∈ F with len(x′) = n
and assume that len(x) = n + 1. Let x2 ∈ G1 be such that x−1

2 · x|n ∈ N .
Let t = x(n).

If t ∈ Y then x−1
2 · x = (x−1

2 · x|n) · t ∈ N · t = N .

If t /∈ Y then t ∈ G1 ⇒ x2 ·t ∈ G1 and, because N is normal, t−1 ·x−1
2 ·x|n ·t ∈

N ⇒ t−1 · x−1
2 · x ∈ N ⇒ (x2 · t)−1 · x ∈ N .

Now assume proposition 7. Let x1, x2 ∈ G1 be such that x1 ·N = x2 ·N ⇒
x−1

2 ·x1 ∈ N . If x−1
2 ·x1 6= 1 then there exists some i ∈ len(x−1

2 ·x1) such that
(x−1

2 · x1)(i) ∈ Y . But this is impossible because x1 and x2 are sequences
which only have elements from (X \ Y ) ∪ (X \ Y )−1 = X \ Y .
�

So now the sticky part is to prove proposition 7. Note that if we just wanted
the result for the least subgroup of F which contains Y then it would be
trivial. But a normal subgroup N ′ must also be closed under products of
the form t−1 ·x · t for all t ∈ F and x ∈ N ′. On first look one cannot exclude
the possibility that there is some clever way to arrange products of this sort
in a way which ends up with a non empty sequence which is an element of
N and contains no element from Y . It could be that there exists some much
more straightforward proof than what I have been able to find or it could
be that Robinson considered the result intuitively obvious and in no need
of a proof or it could be that he underestimated the difficulty of proving
it. Towards the end of this work I will present a more direct approach. It
works for some simple cases but I didn’t manage to make it work for more
complicated ones so I had to adopt a different line of attack.

2 Main course

9. Definitions: FS will denote the set of all finite subsets of N; for A ∈ FS,
card(A) will be the size of A. For A, B in FS with the same size, SI(A, B)
will mean the unique strictly increasing function from A to B. A generalised
word is a function from some A ∈ FS to X and the set of all generalised
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words will be denoted by GW. For any x ∈ GW, dom(x) is the domain of
x i.e. the set in FS on which x is defined. If x ∈ GW with A = dom(x)
and for any B ∈ FS with card(A) = card(B) , the transfer of x from
A to B, in notation tr(x, A,B), is defined as tr(x, A,B) = x ◦ SI(B, A).
Obviously tr(x, A,B) ∈ GW and dom(tr(x, A,B)) = B. In particular, for
all x ∈ GW, tr(x, dom(x), card(dom(x))) ∈ W. If for some x ∈ GW there
exist i1, i2 ∈ dom(x) such that i1 < i2 and there is no j ∈ dom(x) with
i1 < j < i2 and x(i2) = x(i1)−1 then a cancellation is possible which gives a
new element of GW which is the restriction of x to the set dom(x) \ {i1, i2}.
x will be called reduced if no cancellations are possible.

After the above niggling technicalities, we arrive at a more interesting defi-
nition:

10. Definitions: For every x ∈ GW the support of x, in notation su(x), is
the set {i ∈ dom(x) : x(i) /∈ Y }. A good pairing (GP) on x is an equivalence
relation on su(x) which satisfies the following properties:

GP1: Every equivalence class has size 2.
GP2: If {i1, i2}, {j1, j2} are equivalence classes with i1 < j1 < i2 then

i1 < j2 < i2 ; so equivalence classes are “nested” in a certain way.
GP3: If {i1, i2} is an equivalence class then x(i2) = x(i1)−1.
GP4: If {i1, i2} is an equivalence class with i1 < i2 then there exists a

j ∈ dom(x) with i1 < j < i2 and j /∈ su(x).

For the avoidance of doubt, if su(x) = ∅ then x is considered to have a good
pairing. If P is an equivalence relation which is a GP and i ∈ su(x) then
P (i) will denote the unique j ∈ su(x) such that {i, j} is an equivalence class.
The notation I will be using for GPs will be as a set of equivalence classes
rather than as a set of ordered pairs.

11. Proposition: Let x ∈ GW be not reduced and assume that there exists
a GP P on x. Then it is possible to perform a sequence of cancellations
starting from x in such a way that the x′ ∈ GW we reach at the end will
also admit a GP P ′.
Proof: For the rest of the proof we fix i0, i

′
0 ∈ dom(x) such that i0 < i′0 and

x(i′0) = x(i0)−1 and there is no i ∈ dom(x) with i0 < i < i′0. Note that
x(i′0) = x(i0)−1 implies that i0 ∈ su(x)⇔ i′0 ∈ su(x).

The notation i ≈ j will mean that i, j ∈ dom(x), i 6= j and there is no
i1 ∈ dom(x) which is between i and j. So we have i0 ≈ i′0. Note that if
i, j ∈ su(x) and i ≈ j then GP4 implies that {i, j} is not an equivalence
class of P .

Case 1: i0 ∈ su(x).
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From GP3 we have that x(P (i0)) = x(i0)−1 = x(i′0) = x(P (i′0))−1.

Case 1.1: i0 < P (i0). From the assumptions that i0 < i′0, i0 ≈ i′0 and GP2
it follows that i0 < i′0 < P (i′0) < P (i0).

Case 1.1.1: P (i0) ≈ P (i′0). This implies that a cancellation between x(P (i0))
and x(P (i′0)) is also possible. So we do the cancellations between x(i0) and
x(i′0) and x(P (i0)) and x(P (i′0)) and we obtain x′ ∈ GW with

dom(x′) = dom(x) \ {i0, i′0, P (i0), P (i′0)}

and
P ′ = P \ {{i0, P (i0)}, {i′0, P (i′0)}}

It is mechanical to check that P ′ satisfies GP1-GP4.

Case 1.1.2: It does not hold that P (i0) ≈ P (i′0). We want to prove that
there exists a j0 ∈ dom(x) such that P (i′0) < j0 < P (i0) and j0 /∈ su(x).
Take some i1 ∈ dom(x) with P (i′0) < i1 < P (i0). If i1 /∈ su(x), we’re done.
Otherwise it is also the case that P (i′0) < P (i1) < P (i0) because every other
possibility leads to a contradiction using GP2. Then GP4 gives us the j0 we
want.

We define x′ to be the restriction of x to the set

dom(x) \ {i0, i′0}

and
P ′ = (P \ {{i0, P (i0)}, {i′0, P (i′0)}}) ∪ {P (i0), P (i′0)}

It is mechanical to check that P ′ satisfies GP1-GP4; in particular j0 ensures
that GP4 is satisfied.

Case 1.2: P (i0) < i0.

Case 1.2.1: P (i′0) < i′0 which implies that P (i′0) < P (i0) < i0 < i′0.

Case 1.2.1.1: P (i0) ≈ P (i′0). This is the symmetrical of case 1.1.1 and x′

and P ′ are defined in the same manner.

Case 1.2.1.2: It does not hold that P (i0) ≈ P (i′0). This is the symmetrical
of case 1.1.2 and x′ and P ′ are defined in the same manner.

Case 1.2.2: i′0 < P (i′0). x′ and P ′ are defined as in case 1.1.2.

Case 2: i0 /∈ su(x). Let n = card(dom(x)) and f = SI(dom(x), n). Let
A = {i ∈ dom(x) : i < i0 and for all i1 ∈ dom(x),

(
i ≤ i1 < i0 ⇒

(
i1 ∈ su(x)

and f(i0)− f(i1) = f(P (i1))− f(i′0)
))

.
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I will give here a specific example to help the reader visualise what’s hap-
pening. Assume for a moment that x = 〈y0, y1, y2, y3, y

−1
3 , y−1

2 , y−1
1 , y4, y

−1
0 〉.

So dom(x) = n = 9. Assume that su(x) = {0, 1, 2, 5, 6, 8}. If we set
P = {{0, 8}, {1, 6}, {2, 5}}, it is a GP. Let i0 = 3 and i′0 = 4. Then
A = {1, 2}. With all this in place, note that if we simply cancel out y3

with y−1
3 then the 2 elements of the equivalence class {2, 5} will be next to

each other (i.e. 2 ≈ 5) so GP4 will no longer be true. So then we must also
cancel out x(2) with x(5) and finally x(1) with x(6).

This should make clear the gist of things. So now we can return to the proof.

Case 2.1: A is not empty and let i3 be its least element. This means that
A = {i ∈ dom(x) : i3 ≤ i < i0}. Let j3 = f(i3) and j0 = f(i0). We do
in sequence the cancellations x(i0) with x(i′0) and then x(f−1(j0 − j)) with
x(f−1(j0 + 1 + j)) where j takes the values 1, . . . , j0 − j3. The x′ which
results has domain dom(x′) = {i ∈ dom(x) : i < i3 or i > P (i3)}. We set
P ′ = P \ {{i, P (i)} : i ∈ A}.

The only non trivial thing is to prove that P ′ satisfies GP4. Let B = {i ∈
su(x′) : i < i3 and P (i) > P (i3)}. If for an equivalence class {k1, k2} of
P ′ we have {k1, k2} ∩ B = ∅ then it is immediate that there exists some
k3 ∈ dom(x′) between k1 and k2 with k3 /∈ su(x′). So assume that B is not
empty and let i4 be its greatest element.

Case 2.1.1: There exists some i5 ∈ dom(x′) with i4 < i5 < i3. If i5 /∈ su(x′)
then we immediately have what we want. If i5 ∈ su(x′) then i5 /∈ B therefore
i4 < P (i5) < i3 and there exists some k3 ∈ dom(x′) between i5 and P (i5)
with k3 /∈ su(x′).

Case 2.1.2: i4 ≈ i3 in dom(x). Since i4 /∈ A, it follows that f(i0)− f(i4) 6=
f(P (i4)) − f(i′0) therefore it is not the case that P (i4) ≈ P (i3) in dom(x)
so there exists i7 ∈ dom(x′) with P (i3) < i7 < P (i4) and the rest of the
argument should be familiar to the reader by now.

Case 2.2: A is empty. x′ is defined as the restriction of x to the set dom(x)\
{i0, i′0} and P ′ = P . Proving that P ′ satisfies GP4 is an easier version of
the argument in case 2.1.
�
12. Corollary: If some x ∈ GW is not reduced and has a GP P then by a
sequence of cancellations from x we get a reduced x′ ∈ GW which has some
GP P ′.

13. Definition: Let x ∈ GW with a GP P . Let A = dom(x) and let
B ⊂ N with card(A) = card(B) . Let f = SI(B, A) and x′ = tr(x, A,B).
Obviously su(x′) = {i ∈ B : f(i) ∈ su(x)}. We define tr(P,A, B) to be
the equivalence relation on su(x′) which has the set of equivalence classes
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{{i1, i2} : {f(i1), f(i2)} ∈ P}. Then it’s obvious that tr(P,A, B) is a GP for
x′.

14. Proposition: If some x ∈ F has a GP then r(x) also has a GP.
Proof: Clearly for every x1 ∈ GW with A = dom(x1) and every B ⊂ N with
card(A) = card(B) , x1 is reduced iff tr(x1, A,B) is reduced.

So, if x ∈ F has a GP, let x′ ∈ GW be as given by corollary 12. Then
r(x) = tr(x′, dom(x′), card(dom(x′))) has a GP.
�

15. Definition: Let x1, x2 ∈ GW. We define the concatenation of x1 and
x2, in notation x1 � x2, as follows: for i = 1, 2 let Ai = dom(xi) and
ni = card(Ai). x1 � x2 has domain n1 + n2 and for each j in the do-
main, (x1 � x2)(j) = tr(x1, A1, n1)(j) if j < n2, otherwise (x1 � x2)(j) =
tr(x2, A2, n2)(j − n1).

It’s easy to see that concatenation is associative.

16. Proposition: Let x1, x2 ∈ GW with GPs P1 and P2 respectively. Then
the following hold:

1. x1 � x2 has a GP.
2. If dom(x1) 6= ∅ then for every t ∈ X \ Y , t� x1 � t−1 has a GP.
3. For every t ∈ Y , t� x1 and x1 � t have a GP.

Proof: Let A1 = dom(x1), n1 = card(A1), x′1 = tr(x1, A1, n1) and P ′1 =
tr(P1, A1, n1).

1. Let A2 = dom(x2), n2 = card(A2), B2 = {i + n1 : i ∈ n2}, x′2 =
tr(x2, A2, B2) and P ′2 = tr(P2, A2, B2). Then x1 � x2 = x′1 ∪ x′2 and P ′1 ∪ P ′2
is a GP for x1 � x2.

2. Let x′ = t�x1�t−1. Then dom(x′) = n1+2 and x′(0) = t, x′(n1+1) = t−1

and for i with 1 ≤ i ≤ n1, x′(i) = x′1(i − 1). Let B = {i + 1 : i ∈ n1} and
P ′ = tr(P1, A1, B). Then P ′ ∪ {0, n1 + 1} is a GP for x′.

3. Trivial.
�

17. Proposition: Let x1, x2 ∈ F with GPs P1 and P2 respectively. Then the
following elements of F also have a GP:

1. x1 · x2.
2. for every t ∈ X \ Y , t · x1 · t−1.
3. for every t ∈ Y , t · x1 and x1 · t.

Proof: 1 and 3 are immediate from propositions 16, 14 and the definition of
multiplication on F.
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For 2, if x1 is the identity of F, it is immediate; otherwise we have t·x1 ·t−1 =
r(r(t� x1)� t−1) = r(t� x1� t−1). The last equality follows from the proof
of proposition 2.5.6 in [GRI]. Then we use again propositions 16 and 14 to
get the result we want.
�

18. Definitions: A formation sequence is a function f : n→ F (where n ∈ N)
such that for every i ∈ n at least one of the following holds:

1. f(i) is the identity of F.
2. There exist i1, i2 ∈ n with i1 < i and i2 < i such that f(i) = f(i1) ·

f(i2).
3. There exist i1 ∈ n with i1 < i and t ∈ X \ Y such that f(i) =

t · f(i1) · t−1.
4. There exist i1 ∈ n with i1 < i and t ∈ Y such that f(i) = t · f(i1) or

f(i) = f(i1) · t.

An element x of F will be called well-formed if there exists some formation
sequence f and an i ∈ dom(f) such that f(i) = x.

19. Proposition: For every x ∈ F, x ∈ N iff x is well-formed.
Proof: To prove that if x is well-formed then x ∈ N take some formation
sequence f and an i ∈ dom(f) such that f(i) = x and use induction on i.

For the inverse, note first that the concatenation of two formation sequences
is again a formation sequence which implies that the set of well-formed
elements is closed under multiplication. If f : n→ F is a formation sequence
then we can define f ′ : n→ F with f ′(i) = f(i)−1 for all i ∈ n. Clearly f ′ is
also a formation sequence which shows that the set of well-formed elements
is closed under inverses. Let x be well-formed and x′ ∈ F. To prove that
x′ · x · x′−1 is well-formed, use induction on the length of x′.

So the set of well-formed elements is a normal subgroup of F which contains
Y .
�

Corollary: Every x ∈ N has a GP.
Proof: It follows from propositions 17 and 19.
Corollary: Proposition 7 holds.

And this is a proof/solution of the exercise in [ROB] I can believe in! But
it turns out that we can prove some other interesting results.

20. Definitions: A cancellations-free formation sequence (CFFS for short)
is a function f : n→ F (where n ∈ N) such that for every i ∈ n at least one
of the following holds:

1. f(i) is the identity of F.
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2. There exist i1, i2 ∈ n with i1 < i and i2 < i such that
f(i) = f(i1) · f(i2) = f(i1)� f(i2).

3. There exist i1 ∈ n with i1 < i and t ∈ X \ Y such that
f(i) = t · f(i1) · t−1 = t� f(i1)� t−1.

4. There exist i1 ∈ n with i1 < i and t ∈ Y such that
f(i) = t · f(i1) = t� f(i1) or f(i) = f(i1) · t = f(i1)� t.

An element x of F will be called cancellations-free well-formed (CFWF) if
there exists some CFFS f and an i ∈ dom(f) such that f(i) = x.

21. Proposition: If some x ∈ F has a GP then x is CFWF.
Proof: Assume that it holds for all x′ ∈ F with len(x′) < len(x). If su(x) = ∅
then obviously x is CFWF.

Assume that su(x) 6= ∅ and let i0 = min(su(x)). Let P be a GP for x. Let
n = len(x).

Case 1: i0 = 0 and P (i0) = n− 1. Let A = {i ∈ n : 0 < i < n− 1} .

Let x1 = x|A and P1 = P \ {0, n − 1}. Then x1 ∈ GW and P1 is a GP for
x1. Let x2 = tr(x1, A, n−2) and P2 = tr(P1, A, n−2). The sequence x2 was
obtained by taking successive elements from x and x ∈ F so no cancellations
are possible in x2 therefore x2 ∈ F. From the remark in ¶13, P2 is a GP
for x2 so, from the inductive hypothesis, x2 is CFWF so there exist m ∈ N
and f : m → F and j ∈ m such that f is a CFFS and f(j) = x2. Then
x = x(0) ·x2 ·x(n− 1) = x(0)�x2�x(n− 1) so clearly there is also a CFFS
for x.

Case 2: i0 = 0 and P (i0) < n− 1.

Let A = {i ∈ n : i ≤ P (i0)} and B = {i ∈ n : P (i0) < i}. Let n2 = card(B).
Let x1 = x|A and x2 = x|B. From GP2 it follows that if {i, j} in an
equivalence class of P then {i, j} ⊆ A or {i, j} ⊆ B. Let P1 = P ∩ A × A
and P2 = P ∩ B × B. Then P1 is a GP for x1 and P2 is a GP for x2.
Let x3 = tr(x2, B, n2) and P3 = tr(P2, B, n2). Then x3 ∈ F and P3 is
a GP for x3. From the inductive hypothesis, x1 and x3 are CFWF and
x = x1 · x3 = x1 � x3 therefore x is also CFWF.

Case 3: i0 > 0.

Let A = {i ∈ n : i < i0} and B = {i ∈ n : i0 ≤ i}. The remaining steps are
the same as in case 2.
�

Finally, we collect together all the previous results.

22. Proposition: For every x ∈ F the following are equivalent:
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1. x ∈ N .
2. There exists a GP for x.
3. x is CFWF.
4. x is well-formed.

Proof: 1⇒ 2: This is the corollary to proposition 19.
2⇒ 3: Proposition 21.
3⇒ 4: Immediate from the definitions.
4⇒ 1: Proposition 19.
�

23. Example: Let X = {s1, s2, s3, s4} and Y = {s1, s2, s3}. Let x =
〈s1, s

−1
4 , s2, s

−1
4 , s3, s4, s4〉. One formation sequence f for x has 8 elements

and is
f(0) = 1

f(1) = s1 · f(0) = 〈s1〉
f(2) = s4 · f(1) · s−1

4 = 〈s4, s1, s
−1
4 〉

f(3) = s3 · f(0) = 〈s3〉
f(4) = s−1

4 · f(3) · s4 = 〈s−1
4 , s3, s4〉

f(5) = s2 · f(4) = 〈s2, s
−1
4 , s3, s4〉

f(6) = f(2) · f(5) = 〈s4, s1, s
−1
4 , s2, s

−1
4 , s3, s4〉

f(7) = s−1
4 · f(6) · s4 = x

The product which gives f(7) has cancellations. Proposition 22 tells us that
there exists also a CFFS for x. The reader may find it interesting to come
up with one.

3 The direct approach

This is another way to try and prove proposition 7. As I’ve said earlier, I
couldn’t manage to make it work in general but I’m including it because I’m
curious whether any readers may find a way to make it work in general.

24. Definitions: For every x ∈ F and every m ≤ len(x), ini(x, m) will mean
the subsequence of x which has the first m elements and fin(x, m) will mean
the subsequence of x which has the final m elements. We have the identity
that for m1, m2 ∈ N with m1 + m2 = len(x),

x = ini(x, m1) · fin(x, m2) = ini(x, m1)� fin(x, m2)

.

For all x1, x2 ∈ F, nce(x1, x2) will mean max{m ∈ N : m ≤ len(x1) and
m ≤ len(x2) and fin(x1, m) = ini(x2, m)−1}. “nce” stands for “number of
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cancelled elements” and tells us how many cancellations will happen when
we form the product x1 · x2. More precisely, if for some x1, x2 we set m0 =
nce(x1, x2) and also x3 = ini(x1, len(x1) − m0), x4 = fin(x1, m0), x5 =
ini(x2, m0) and x6 = fin(x2, len(x2)−m0) then
x1 · x2 = r(x1 � x2) = r(x3 � x4 � x5 � x6) = r(x3 � x4 � x−1

4 � x6) =
r(x3 � x6) = x3 � x6 = x3 · x6.

A useful fact is that nce(x1, x2) = nce(x−1
2 , x−1

1 ).

A x ∈ F will be called pure if all the elements of x are in Y .

25. Proposition: Let x1, x2 ∈ F be such that nce(x1, x2) = 0 and x2 pure.
Then x1 · x−1

2 · x
−1
1 has at least len(x2) elements from Y .

Proof: Assume that it holds for all x′1, x
′
2 ∈ F with len(x′1) + len(x′2) <

len(x1) + len(x2).

Obviously it holds if len(x2) = 0. Assume that len(x2) > 0.

Let m0 = nce(x1, x
−1
2 ), x3 = ini(x1, len(x1) − m0), x4 = fin(x1, m0) and

x5 = fin(x−1
2 , len(x2) −m0). Then x1 · x−1

2 · x
−1
1 = x3 · x4 · x−1

4 · x5 · x−1
1 =

x3 · x5 · x−1
1 .

Assume len(x5) > 0. nce(x1, x2) = 0 ⇒ nce(x−1
2 , x−1

1 ) = 0 and x−1
2 =

x−1
4 � x5 therefore x5 · x−1

1 = x5 � x−1
1 . Also, by the way x3 and x5 were

defined, x3 · x5 = x3 � x5. So

x3 · x5 · x−1
1 = x3 � x5 � x−1

1 = x3 � x5 � x−1
4 � x−1

3

which has at least len(x5) + len(x−1
4 ) elements from Y . len(x5) + len(x−1

4 ) =
len(x−1

2 ) = len(x2).

Assume now that len(x5) = 0. Then x−1
2 = x−1

4 and x3 ·x5 ·x−1
1 = x3 ·x−1

1 =
x3 · x−1

4 · x
−1
3 . Then x4 is pure , nce(x3, x4) = 0 and len(x3) + len(x4) =

len(x1) < len(x1) + len(x2). Therefore, from the inductive hypothesis, x3 ·
x−1

4 · x
−1
3 has at least len(x4) = len(x2) elements from Y .

�

26. Proposition: Let x, y ∈ F with y pure. Set n = len(y), m = nce(x, y) and
m′ = nce(fin(y, n−m), x−1). Then x·y ·x−1 has at least n−m−m′+|m−m′|
elements from Y . Furthermore, n−m−m′+ |m−m′| = 0 iff x · y ·x−1 = 1.
Proof: Case 1: m + m′ < n and m ≥ m′.

Let x1 = ini(x, len(x)−m), x2 = ini(fin(x, m), m−m′) and x3 = fin(x, m′).
So we have x = x1 � x2 � x3. Let y1 = ini(y, m), y2 = ini(fin(y, n−m), n−
m−m′) and y3 = fin(y,m′). Then

x · y · x−1 = x1 · (x2 · x3 · y1) · y2 · (y3 · x−1
3 ) · x−1

2 · x
−1
1 = x1 · y2 · x−1

2 · x
−1
1
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By the definitions of x1, x2, y2 it follows that x1 ·y2 = x1�y2 and y2 ·x−1
2 =

y2 � x−1
2 . So x1 · y2 · x−1

2 · x
−1
1 has at least len(y2) + len(x−1

2 ) elements from
Y so n−m−m′ + |m−m′| elements.

Case 2: m + m′ = n and m ≥ m′.

We define x1, x2, x3, y1, y2, y3 as in case 1. Now len(y2) = 0 so y2 = 1

therefore
x · y · x−1 = x1 · x−1

2 · x
−1
1

nce(x1, x2) = 0 because they are adjacent subsequences of x so from propo-
sition 25 it follows that x1 · x−1

2 · x
−1
1 has at least len(x2) elements from Y

which makes it m−m′ = |m−m′| elements.

Case 3: m + m′ < n and m < m′.

Let x1 = ini(x, len(x)−m′), x2 = ini(fin(x, m′), m′−m) and x3 = fin(x, m).
Again we have x = x1 � x2 � x3. Let y1 = ini(y,m), y2 = ini(fin(y, n −
m), n−m−m′) and y3 = fin(y,m′). Then

x · y · x−1 = x1 · x2 · (x3 · y1) · y2 · (y3 · x−1
3 · x

−1
2 ) · x−1

1 = x1 · x2 · y2 · x−1
1

As with case 1 we have that x1 · x2 · y2 · x−1
1 = x1� x2� y2� x−1

1 which has
at least len(x2) + len(y2) = m′ −m + n−m−m′ = n− 2 ·m elements from
Y .

Case 4: m + m′ = n and m < m′.

The overall pattern should be clear by now so I’ll leave that for the reader.
�

The next step in this approach was to try and prove a proposition analogous
to 26 but more complicated. After experimenting with various things, the
most promising seemed to be

Let x1, x2, x3, y1, y2 ∈ F with y1, y2 pure. Then

x1 · x2 · y1 · x−1
2 · x3 · y2 · x−1

3 · x
−1
1

is either the identity or has at least one element from Y .

The approach of the proof was supposed to be analogous to proposition
26, namely break x1, x2, x3, y1, y2 into subsequences which cancel out with
each other when you form the product above and then distinguish cases
based on the relative lengths of these subsequences. I could make some of
these cases work but with others I got stuck and, interestingly, not the ones
which seemed most complicated on first look. I started considering different
approaches and eventually came up with the one in the previous section.
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4 Chuck Norris facts

To the best of my knowledge, there are no Chuck Norris facts associated
with this work.

♠♠♠♠♠♠♠♠♠♠♠

Spiros Bousbouras, September 2023.

You can contact me at

(@−1 · u−1 · o−1 · b−1 · i−1 · p−1 · s−1)−1 · ((c · o ·m)−1 · .−1(g ·m · a · i · l)−1)−1
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